ALGÈBRE LINÉAIRE - MATH111(F) Semestre d'automne — 2024-2025

Série 11: Valeurs et vecteurs propres

Objectifs de cette série

À la fin de cette série vous devriez être capable de

- (O.1) continuer à calculer le polynôme caractéristique, les valeurs et les espaces propres d'une matrice carrée;
- (O.2) déterminer si une matrice est diagonalisable, et la diagonaliser si possible;
- (O.3) utiliser la diagonalisation pour calculer des puissances d'une matrice.

Nouveau vocabulaire dans cette série

- trace d'une matrice
- matrice diagonalisable
- diagonalisation d'une matrice
- multiplicité algébrique
- multiplicité géométrique

Noyau d'exercices

1.1 L'application trace

Exercice 1 (Définition et premières propriétés I)

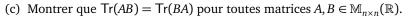
Un peu de théorie

On rappelle que l'application $\operatorname{Tr}: \mathbb{M}_{n \times n}(\mathbb{R}) \to \mathbb{R}$ est définie par

$$\operatorname{Tr}\begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,n} \end{pmatrix} = \sum_{i=1}^{n} A_{i,i} = A_{1,1} + \ldots + A_{n,n}.$$

Elle est appelée l'application trace.

- (a) Montrer que Tr est une application linéaire.
- (b) Montrer que $Tr(A^T) = Tr(A)$ pour toute matrice $A \in \mathbb{M}_{n \times n}(\mathbb{R})$.



(d) Montrer que $Tr(AB) \neq Tr(A) Tr(B)$ en général.

1.2 Multiplicités algébriques et géométriques

Exercice 2 (Calculs de valeurs et vecteurs propres)

Considérons les matrices

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & 2 \\ 0 & 4 \end{pmatrix}, C = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix},$$

$$D = \begin{pmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{pmatrix} \text{ et } E = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 0 & 4 & 17 & 1 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Pour chacune des matrices précédentes, calculer le polynôme caractéristique, les valeurs propres et les vecteurs propres.

1.3 Diagonalisation et puissances de matrices

Exercice 3 (Diagonalisation d'une puissance I)

Soit P une matrice carrée inversible de taille n et D une matrice carrée diagonale de taille n. On pose $A = PDP^{-1}$. Montrer que $A^2 = PD^2P^{-1}$, et déduire une formule qui permet de calculer A^k pour tout entier $k \ge 2$.

Exercice 4 (Diagonalisation I)

Considérons la matrice

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$

- (a) Calculer les valeurs propres de A.
- (b) Calculer les vecteurs propres de A.
- (c) Soit P la matrice dont les colonnes sont des vecteurs propres de A (associés à des valeurs propres différentes). Calculer $P^{-1}AP$, et interpréter le résultat.
- (d) Calculer A^{1000} .

Exercice 5 (Diagonalisation II)

Considérons les matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}, C = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}, \text{ et } D = \begin{pmatrix} -2 & 4 & -2 \\ 4 & -2 & -2 \\ -2 & -2 & 4 \end{pmatrix}.$$

Déterminer les matrices qui sont diagonalisables.

Exercice 6 (Diagonalisation III)

Considérons les matrices

$$A = \begin{pmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 4 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 3 & 3 \end{pmatrix}, C = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{pmatrix},$$

$$D = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix} \text{ et } E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Indiquer celles qui sont diagonalisables (toujours en justifiant), et le cas échéant, diagonaliser ces matrices et exhiber les vecteurs propres.

Exercice 7 (Diagonalisation d'une application entre matrices)

Soit $\operatorname{Sym}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées symétriques de taille 2, dont une base (ordonnée) est donnée par

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Soit $T: \mathsf{Sym}_2(\mathbb{R}) \to \mathsf{Sym}_2(\mathbb{R})$ l'application linéaire définie par

$$T\begin{pmatrix} a & b \\ b & d \end{pmatrix} = \begin{pmatrix} 2a - d & -b \\ -b & -a + 2d \end{pmatrix}$$

pour tous $a, b, d \in \mathbb{R}$.

- (a) Calculer les 3 valeurs propres (distinctes) $\{\lambda_1, \lambda_2, \lambda_3\}$ de T.
- (b) Trouver un vecteur propre $M_i \in \operatorname{Sym}_2(\mathbb{R})$ associé à chaque valeur propre λ_i . Montrer que $\mathcal{B}' = \{M_1, M_2, M_3\}$ est une base de $\mathsf{Sym}_2(\mathbb{R})$.
- (c) Écrire la représentation matricielle de T relative à la base \mathscr{B}' .
- (d) Calculer $T^{10}(A)$, où

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}.$$

Pour compléter la pratique

2.1 L'application trace

Exercice 8 (QCM sur l'application trace)

Résoudre les QCM dans les items suivants, où chaque QCM n'admet qu'une seule réponse correcte.

(a) Le noyau de l'application $\operatorname{Tr}: \mathbb{M}_{2 \times 2}(\mathbb{R}) \to \mathbb{R}$ est un sous-espace vectoriel de $\mathbb{M}_{2 \times 2}(\mathbb{R})$ de dimension

1;	2;	3;	4
----	----	----	---

(b) Le noyau de l'application $Tr : M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ admet la base

$$\begin{array}{cccc}
 & \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}; \\
 & \left\{ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \right\}; \\
 & \left\{ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \right\}; \\
 & \left\{ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}.
\end{array}$$

2.2 Diagonalisation et puissances de matrices

Exercice 9 (Diagonalisation d'une puissance II)

Démontrer ou trouver un contre-exemple aux affirmations suivantes :

- (a) Si *A* est une matrice carrée de taille *n* diagonalisable, alors A^k est diagonalisable pour tout entier $k \ge 2$.
- (b) Si A est une matrice carrée de taille n et A^k est diagonalisable pour un entier $k \ge 2$, alors A est diagonalisable.

Exercice 10 (Valeurs propres de matrices diagonalisables de taille 2)

Existe-t-il une matrice

matrice.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_{2 \times 2}(\mathbb{R})$$

avec $b \neq 0$, diagonalisable et ne possédant qu'une seule valeur propre de multiplicité 2?

Exercice 11 (V/F sur diagonalisation I)

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

	1 1	•		3		1		
							V	F
(a	Si A et B son	t deux matrices s	semblables, alor	s elles ont les m	êmes valeur	s propres.		
(b	-	matrice de taille opres distinctes.	Ü	onalisable il fau	ut qu'elle ait	au moins		
(c)		ont deux vecteu s associées sont		irement indépe	endants, alor	s leur va-		
(d		trois matrices <i>A</i> est équivalente		équivalente à <i>l</i>	B, et <i>B</i> est éq	uivalente		
Exerc	ice 12 (V/F	sur diagonalisa	tion II)					
Indiq	ıer pour chaq	ue énoncé s'il es	st vrai ou faux e	t justifier brièv	ement votre	réponse.		
							V	F

(a) Un espace propre d'une matrice carrée A de taille n est l'espace nul d'une certaine

(b) Pour une matrice carrée A , si A^2 est la matrice nulle, alors la seule valeur propre de A est 0.	
(c) Les valeurs propres d'une matrice triangulaire sont les éléments de sa diagonale principale.	
(d) L'ensemble $\{\mathbf v_1,\ldots,\mathbf v_n\}$ des vecteurs propres associés aux valeurs propres distinctes $\lambda_1,\ldots,\lambda_n\in\mathbb R$ d'une matrice carrée A est linéairement dépendant.	
Exercice 13 (V/F sur diagonalisation III)	
Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.	
	V F
(a) Une matrice $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est diagonalisable si et seulement si elle possède n valeurs propres distinctes.	
(b) Une matrice $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est diagonalisable si elle possède n valeurs propres distinctes.	
(c) Si une matrice $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est diagonalisable, alors elle est inversible.	
(d) Si une matrice $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est inversible, alors elle est diagonalisable.	
(e) Si 0 est une valeur propre d'une matrice $A \in \mathbb{M}_{n \times n}(\mathbb{R})$, alors $\operatorname{rang}(A) < n$.	
(f) Étant donné $A, P \in \mathbb{M}_{n \times n}(\mathbb{R})$ avec P inversible, $\lambda \in \mathbb{R}$ est une valeur propre de A	

2.3 Diagonalisation dans le cas complexe

Exercice 14 (Diagonalisation complexe I)

Considérons les matrices

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 1 - \sqrt{3} & 1 + \sqrt{3} \\ 1 + \sqrt{3} & 1 & 1 - \sqrt{3} \\ 1 - \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix}.$$

si et seulement si $\lambda \in \mathbb{R}$ est une valeur propre de $P^{-1}AP$.

- (a) Calculer les valeurs propres complexes de *A* et de *B*.
- (b) Calculer les vecteurs propres complexes de *A* et de *B*.
- (c) Soit P et Q les matrice dont les colonnes sont des vecteurs propres de A et de B, respectivement (associés à des valeurs propres différentes). Calculer $P^{-1}AP$ et $Q^{-1}BQ$ et interpréter le résultat.

Exercice 15 (Diagonalisation complexe II)

Soit *A* une matrice de taille 3×3 à coefficients réels telle que $\lambda_1 = 4$ et $\lambda_2 = 2e^{i\pi/3}$ sont valeurs propres de *A* avec vecteurs propres

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ et } \mathbf{v}_2 = \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix},$$

respectivement. Calculer A.

Indication: On rappelle les identités

$$e^{i\pi/3} + e^{-i\pi/3} = 2\frac{e^{i\pi/3} + e^{-i\pi/3}}{2} = 2\cos(\pi/3) = 2\frac{1}{2} = 1,$$

$$-ie^{i\pi/3} + ie^{-i\pi/3} = -i2\frac{e^{i\pi/3} - e^{-i\pi/3}}{2} = 2\sin(\pi/3) = 2\frac{\sqrt{3}}{2} = \sqrt{3}.$$